codekarim is just a bunch of reminders for fenuapps.com
# -*- coding: utf-8 -*- """ Created on Mon Jan 21 01:30:05 2019 @author: K """ from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_breast_cancer cancer = load_breast_cancer() print(cancer['data'].shape) X = cancer['data'] y = cancer['target'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y) #from sklearn.preprocessing import StandardScaler from sklearn import preprocessing #scaler = StandardScaler() # Fit only to the training data X_train = preprocessing.scale(X_train) #X_train = preprocessing.normalize(X_train) X_test = preprocessing.scale(X_test) from sklearn.neural_network import MLPClassifier mlp = MLPClassifier(hidden_layer_sizes=(30,30,30)) mlp.fit(X_train,y_train) predictions = mlp.predict(X_test) from sklearn.metrics import classification_report,confusion_matrix print(confusion_matrix(y_test,predictions)) print(classification_report(y_test,predictions)) from sklearn_porter import Porter porter = Porter(mlp, language='js') #porter nom_pkl --js --pipe > estimator.js output = porter.export(embed_data=True) #print(output)