%load_ext sql
# Enter your Db2 credentials in the connection string below
# Recall you created Service Credentials in Part III of the first lab of the course in Week 1
# i.e. from the uri field in the Service Credentials copy everything after db2:// (but remove the double quote at the end)
# for example, if your credentials are as in the screenshot above, you would write:
# %sql ibm_db_sa://my-username:my-password@dashdb-txn-sbox-yp-dal09-03.services.dal.bluemix.net:50000/BLUDB
# Note the ibm_db_sa:// prefix instead of db2://
# This is because JupyterLab's ipython-sql extension uses sqlalchemy (a python SQL toolkit)
# which in turn uses IBM's sqlalchemy dialect: ibm_db_sa
dsn_driver = "{IBM DB2 ODBC DRIVER}"
dsn_database = "BLUDB" # e.g. "BLUDB"
dsn_port = "50000" # e.g. "50000"
dsn_protocol = "TCPIP" # i.e. "TCPIP"
%sql ibm_db_sa://rjz07540:xwc76jpv64jfwb%40v@dashdb-txn-sbox-yp-dal09-04.services.dal.bluemix.net:50000/BLUDB
%%sql
CREATE TABLE INTERNATIONAL_STUDENT_TEST_SCORES (
country VARCHAR(50),
first_name VARCHAR(50),
last_name VARCHAR(50),
test_score INT
);
INSERT INTO INTERNATIONAL_STUDENT_TEST_SCORES (country, first_name, last_name, test_score)
VALUES
('United States', 'Marshall', 'Bernadot', 54),
('Ghana', 'Celinda', 'Malkin', 51),
('Ukraine', 'Guillermo', 'Furze', 53),
('Greece', 'Aharon', 'Tunnow', 48),
('Russia', 'Bail', 'Goodwin', 46),
('Poland', 'Cole', 'Winteringham', 49),
('Sweden', 'Emlyn', 'Erricker', 55),
('Russia', 'Cathee', 'Sivewright', 49),
('China', 'Barny', 'Ingerson', 57),
('Uganda', 'Sharla', 'Papaccio', 55),
('China', 'Stella', 'Youens', 51),
('Poland', 'Julio', 'Buesden', 48),
('United States', 'Tiffie', 'Cosely', 58),
('Poland', 'Auroora', 'Stiffell', 45),
('China', 'Clarita', 'Huet', 52),
('Poland', 'Shannon', 'Goulden', 45),
('Philippines', 'Emylee', 'Privost', 50),
('France', 'Madelina', 'Burk', 49),
('China', 'Saunderson', 'Root', 58),
('Indonesia', 'Bo', 'Waring', 55),
('China', 'Hollis', 'Domotor', 45),
('Russia', 'Robbie', 'Collip', 46),
('Philippines', 'Davon', 'Donisi', 46),
('China', 'Cristabel', 'Radeliffe', 48),
('China', 'Wallis', 'Bartleet', 58),
('Moldova', 'Arleen', 'Stailey', 38),
('Ireland', 'Mendel', 'Grumble', 58),
('China', 'Sallyann', 'Exley', 51),
('Mexico', 'Kain', 'Swaite', 46),
('Indonesia', 'Alonso', 'Bulteel', 45),
('Armenia', 'Anatol', 'Tankus', 51),
('Indonesia', 'Coralyn', 'Dawkins', 48),
('China', 'Deanne', 'Edwinson', 45),
('China', 'Georgiana', 'Epple', 51),
('Portugal', 'Bartlet', 'Breese', 56),
('Azerbaijan', 'Idalina', 'Lukash', 50),
('France', 'Livvie', 'Flory', 54),
('Malaysia', 'Nonie', 'Borit', 48),
('Indonesia', 'Clio', 'Mugg', 47),
('Brazil', 'Westley', 'Measor', 48),
('Philippines', 'Katrinka', 'Sibbert', 51),
('Poland', 'Valentia', 'Mounch', 50),
('Norway', 'Sheilah', 'Hedditch', 53),
('Papua New Guinea', 'Itch', 'Jubb', 50),
('Latvia', 'Stesha', 'Garnson', 53),
('Canada', 'Cristionna', 'Wadmore', 46),
('China', 'Lianna', 'Gatward', 43),
('Guatemala', 'Tanney', 'Vials', 48),
('France', 'Alma', 'Zavittieri', 44),
('China', 'Alvira', 'Tamas', 50),
('United States', 'Shanon', 'Peres', 45),
('Sweden', 'Maisey', 'Lynas', 53),
('Indonesia', 'Kip', 'Hothersall', 46),
('China', 'Cash', 'Landis', 48),
('Panama', 'Kennith', 'Digance', 45),
('China', 'Ulberto', 'Riggeard', 48),
('Switzerland', 'Judy', 'Gilligan', 49),
('Philippines', 'Tod', 'Trevaskus', 52),
('Brazil', 'Herold', 'Heggs', 44),
('Latvia', 'Verney', 'Note', 50),
('Poland', 'Temp', 'Ribey', 50),
('China', 'Conroy', 'Egdal', 48),
('Japan', 'Gabie', 'Alessandone', 47),
('Ukraine', 'Devlen', 'Chaperlin', 54),
('France', 'Babbette', 'Turner', 51),
('Czech Republic', 'Virgil', 'Scotney', 52),
('Tajikistan', 'Zorina', 'Bedow', 49),
('China', 'Aidan', 'Rudeyeard', 50),
('Ireland', 'Saunder', 'MacLice', 48),
('France', 'Waly', 'Brunstan', 53),
('China', 'Gisele', 'Enns', 52),
('Peru', 'Mina', 'Winchester', 48),
('Japan', 'Torie', 'MacShirrie', 50),
('Russia', 'Benjamen', 'Kenford', 51),
('China', 'Etan', 'Burn', 53),
('Russia', 'Merralee', 'Chaperlin', 38),
('Indonesia', 'Lanny', 'Malam', 49),
('Canada', 'Wilhelm', 'Deeprose', 54),
('Czech Republic', 'Lari', 'Hillhouse', 48),
('China', 'Ossie', 'Woodley', 52),
('Macedonia', 'April', 'Tyer', 50),
('Vietnam', 'Madelon', 'Dansey', 53),
('Ukraine', 'Korella', 'McNamee', 52),
('Jamaica', 'Linnea', 'Cannam', 43),
('China', 'Mart', 'Coling', 52),
('Indonesia', 'Marna', 'Causbey', 47),
('China', 'Berni', 'Daintier', 55),
('Poland', 'Cynthia', 'Hassell', 49),
('Canada', 'Carma', 'Schule', 49),
('Indonesia', 'Malia', 'Blight', 48),
('China', 'Paulo', 'Seivertsen', 47),
('Niger', 'Kaylee', 'Hearley', 54),
('Japan', 'Maure', 'Jandak', 46),
('Argentina', 'Foss', 'Feavers', 45),
('Venezuela', 'Ron', 'Leggitt', 60),
('Russia', 'Flint', 'Gokes', 40),
('China', 'Linet', 'Conelly', 52),
('Philippines', 'Nikolas', 'Birtwell', 57),
('Australia', 'Eduard', 'Leipelt', 53)
country
with a value of "Canada"
, I can use this variable in a SQL query to find all the rows of students from Canada.¶country = "Canada"
%sql select * from INTERNATIONAL_STUDENT_TEST_SCORES where country = :country
test_score_distribution
using the =
operator.¶test_score_distribution = %sql SELECT test_score as "Test Score", count(*) as "Frequency" from INTERNATIONAL_STUDENT_TEST_SCORES GROUP BY test_score;
test_score_distribution
DataFrame()
method. Dataframe objects are much more versatile than SQL query result objects. For example, we can easily graph our test score distribution after converting to a dataframe.¶dataframe = test_score_distribution.DataFrame()
%matplotlib inline
# uncomment the following line if you get an module error saying seaborn not found
# !pip install seaborn
import seaborn
plot = seaborn.barplot(x='Test Score',y='Frequency', data=dataframe)
Now you know how to work with Db2 from within JupyterLab notebooks using SQL "magic"!
%%sql
-- Feel free to experiment with the data set provided in this notebook for practice:
SELECT country, first_name, last_name, test_score FROM INTERNATIONAL_STUDENT_TEST_SCORES;
Copyright © 2018 cognitiveclass.ai. This notebook and its source code are released under the terms of the MIT License.